Observational constraints on mixed-phase clouds imply higher climate sensitivity

TRUDE STORELVMO AND I. TAN (YALE UNIVERSITY)

COLLABORATORS: M. KOMURCU (U. OF NEW HAMPSHIRE), M. ZELINKA (PNNL)

Yale

TAKE-HOME MESSAGES

- CALIOP CLOUD TOP PHASE RETRIEVALS SHOW THAT GLOBAL CLIMATE MODELS (GCMS) UNDERESTIMATE THE RELATIVE AMOUNTS OF LIQUID IN MIXED-PHASE CLOUDS
- THIS HAS IMPLICATIONS FOR THEIR ABILITY TO CORRECTLY SIMULATE AN
 IMPORTANT CLOUD-CLIMATE FEEDBACK INVOLVING MIXED-PHASE CLOUDS

MIXED-PHASE CLOUD SUB-GRIDSCALE STRUCTURE

- "DISCOVERED" ~25 YEARS AGO BY MITCHELL ET AL. (1989) AND LI & LE TREUT (1992)
- THE STANDARD ASSUMPTION IN CLIMATE MODELS
 IS THAT LIQUID AND ICE ARE UNIFORMLY MIXED
 THROUGHOUT EACH ENTIRE MODEL GRID BOX
- IN REALITY, FIELD MEASUREMENTS SHOW THAT MIXED-PHASE CLOUDS MORE TYPICALLY CONSIST OF POCKETS CONSISTING SOLELY OF LIQUID OR ICE
- THIS HAS CONSEQUENCES FOR HOW THE WBF
 PROCESS SHOULD BE PARAMETERIZED IN LARGE SCALE MODELS

ICE NUCLEATION SEEN FROM SPACE

THE AMOUNT OF
 SUPERCOOLED LIQUID IS
 NEGATIVELY CORRELATED WITH
 (IN ORDER OF STATISTICAL
 SIGNIFICANCE):

- 1. MINERAL DUST
- 2. MINERAL DUST MIXED WITH POLLUTION

3. SMOKE

Aerosol frequency of occurrence and SLF from CALIOP (2007-2014)

Tan, Storelvmo & Choi (JGR, 2014)

THE "CLOUD PHASE FEEDBACK"

- FOR COMPARABLE CLOUD WATER CONTENTS, LIQUID CLOUDS ARE OPTICALLY MUCH THICKER THAN ICE CLOUDS
- AS THE TROPOSPHERE WARMS DUE TO INCREASING ATMOSPHERIC CO₂, ICE CLOUDS ARE REPLACED BY LIQUID CLOUDS, AND THE OVERALL CLOUD OPTICAL THICKNESS INCREASES.
- THIS AFFECTS BOTH LW AND SW RADIATION, BUT THE SW EFFECT DOMINATES.
- THE RESULTING CLOUD-CLIMATE FEEDBACK IS NEGATIVE, AND MOST IMPORTANT AT MID/HIGH LATITUDES.

Storelvmo, Tan and Korolev (2015)

IMPACT OF SUPERCOOLED LIQUID ON EQUILIBRIUM CLIMATE SENSITIVITY (ECS)

Modeling tool: The Community Earth System Model (CESM)

 5 atmosphere+ocean simulations with very different amounts of super-cooled liquid were run to equilibrium with both present-day and doubled atmospheric CO₂.

 Two of them (CALIOP-SLF1 and CALIOP-SLF2) were designed to have SLFs similar to CALIOP (achieved by reducing IN concentration and retarding WBF process).

Tan, Storelvmo & Zelinka (2016)

DIFFERENCES IN ECS CAUSED BY DIFFERENCES IN THE CLOUD OPTICAL DEPTH FEEDBACK

d CALIOP-SLF1

e CALIOP-SLF2

c Control

 $Wm^{-2}K^{-1}$

-2

Tan, Storelvmo & Zelinka (2016)

CONCLUSION

- CLOUD PHASE EXERTS A DOMINANT INFLUENCE ON THE OVERALL CLOUD-CLIMATE FEEDBACK, AND THEREFORE ON CLIMATE SENSITIVITY
- CLOUD PHASE IS ONE OF ONLY A HANDFUL OF KNOWN
 EMERGENT CONSTRAINTS ON MODEL PERFORMANCE
- GLOBAL HIGH-QUALITY CLOUD PHASE OBSERVATIONS ARE CRITICALLY IMPORTANT FOR GCM VALIDATION AND ULTIMATELY FOR RELIABLE PROJECTIONS OF FUTURE CLIMATE