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Observational constraints on mixed-phase
clouds imply higher climate sensitivity
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TAKE-HOME MESSAGES

* CALIOP CLOUD TOP PHASE RETRIEVALS SHOW THAT GLOBAL CLIMATE MODELS
(GCMS) UNDERESTIMATE THE RELATIVE AMOUNTS OF LIQUID IN MIXED-PHASE
CLOUDS

* THIS HAS IMPLICATIONS FOR THEIR ABILITY TO CORRECTLY SIMULATE AN
IMPORTANT CLOUD-CLIMATE FEEDBACK INVOLVING MIXED-PHASE CLOUDS
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_ GCM UNDERESTIMATION OF SUPERCOOLED LIQUID
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CESANA ET AL. (2015) AND MCCOY ET AL. (2016) HAVE SINCE CONFIRMED THE GEKIERA@V\ UNDERESTIMATION OF SUPERCOOLED LIQUID
)\




| N
e/ °

_ WHAT CONTROLS SUPERCOOLED LIQUID IN GCMS?

Contribution to cloud phase variability in CAMS

The Wegener-Bergeron- Heterogeneous ice

Findeisen (WBF) process nucleation

Ice crystal fall speed

4.9%

10°C isotherm

" Tan and Storelvmo (JAS, 20\1}5)
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MIXED-PHASE CLOUD SUB-GRIDSCALE STRUCTURE

* “DISCOVERED” ~25 YEARS AGO BY MITCHELL ET AL.
(1989) AND LI & LE TREUT (1992) @

« THE STANDARD ASSUMPTION IN CLIMATE MODELS o | [N $0;@”f$ o z
IS THAT LIQUID AND ICE ARE UNIFORMLY MIXED O3 0900 LCoge 0 e O
THROUGHOUT EACH ENTIRE MODEL GRID BOX ——

« IN REALITY, FIELD MEASUREMENTS SHOW THAT
MIXED-PHASE CLOUDS MORE TYPICALLY CONSIST | \) s K‘
OF POCKETS CONSISTING SOLELY OF LIQUID OR <>
ce RN

0O(100km) 0(100km)

» THIS HAS CONSEQUENCES FOR HOW THE WBF
PROCESS SHOULD BE PARAMETERIZED IN LARGE- Tan and Storelvmo (JAS, 2015)
SCALE MODELS
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- WHAT PARTICLES ARE RELEVANT AS ICE NUCLEI IN
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THE ATMOSPHERE?

/ Bacteria (P. syringae, lowest activity)
% DeMott et al. IN concentrations Bacteria (P. syringae, highest activity)
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ICE NUCLEATION SEEN FROM SPACE
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SUPERCOOLED CLOUD FRACTION (%)
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RELATIVE AEROSOL FREQUENCY
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"""" -10'C smoke

""" -10C polluted dust
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"""" -20°C smoke
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=== _30C clean dust
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« THE AMOUNT OF
SUPERCOOLED LIQUID IS
NEGATIVELY CORRELATED WITH
(IN ORDER OF STATISTICAL
SIGNIFICANCE):

1. MINERAL DUST

2. MINERAL DUST MIXED WITH
POLLUTION

3. SMOKE
—r

Aerosol frequency of occurrence and SLF from CALIOP (200Z-2014) Tan, Storelvmo & ChoinR, 2014)
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THE *“CLOUD PHASE FEEDBACK"

FOR COMPARABLE CLOUD WATER CONTENTS, LIQUID
CLOUDS ARE OPTICALLY MUCH THICKER THAN ICE
CLOUDS

AS THE TROPOSPHERE WARMS DUE TO INCREASING
ATMOSPHERIC CO,, ICE CLOUDS ARE REPLACED BY
LIQUID CLOUDS, AND THE OVERALL CLOUD OPTICAL
THICKNESS INCREASES.
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THIS AFFECTS BOTH LW AND SW RADIATION, BUT THE
SW EFFECT DOMINATES.

THE RESULTING CLOUD-CLIMATE FEEDBACK IS Storelymo, TaniancliKciol g Eelis
NEGATIVE, AND MOST IMPORTANT AT MID/HIGH
LATITUDES.
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2 IMPACT OF SUPERCOOLED LIQUID ON
~ EQUILIBRIUM CLIMATE SENSITIVITY (ECS)

* 5 atmosphere+ocean

§ =R simulations with very different
P i HM Low-SLF amounts of super-cooled
S -2 ] Control liquid were run to equilibrium
g -20 [] CALIOP-SLF1 with both present-day and
g— 15 - [0 CALIOP-SLF2 doubled atmospheric CO.,,.
I9 10 4 B High-SLF * Two of them (CALIOP-SLF1
0'0 0'2 0'4 OI6 0I8 1'0 and CALIOP-SLF2) were
designed to have SLFs similar
SLF
to CALIOP (achieved by
@ o o reducing IN concentration and
LL < retarding WBF process).
» 3 o 3
O
o o,
. . ~/ \/T Storelvmo & Zelinka (2016)
Modeling tool: The Community Earth System Model (CESM) EER A/ il
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Q RELATIONSHIP BETWEEN SLF AND ECS
0 _| 5 =
O R~ =0.945
p =0.0036
N O
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® THE CLOUD PHASE FEEDBACK IN ACTION
Low-SLF High-SLF

a Change in Cloud Ice Density (10’5k9m'3) b Change in Cloud Ice Density (10'5k?m'3)
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" DIFFERENCES IN ECS CAUSED BY DIFFERENCES IN THE
CLOUD OPTICAL DEPTH FEEDBACK
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_ Tan, Storelvmo & Zelinka (2016)
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CLOUD VS. NON-CLOUD FEEDBACKS

Cloud feedbacks Non-cloud feedbacks
— =8~ 1 (R?=0.99, p=0.00081) =@— Water vapour (R?= 0.17, p=0.48)
Amt (R?= 0.098, p=0.61) Lapse rate (R?=0.0010, £=0.96)
© =- CTP (R?=0.16, p=0.50) < =8~ Planck (R%= 0.0035, p=0.93)
== =8~ Albedo (R?=0.21, p=0.44)
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Tan, Storelvmo & Zelinka (2016)
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¢ CONCLUSION

* CLOUD PHASE EXERTS A DOMINANT INFLUENCE ON THE
OVERALL CLOUD-CLIMATE FEEDBACK, AND THEREFORE ON
CLIMATE SENSITIVITY

* CLOUD PHASE IS ONE OF ONLY A HANDFUL OF KNOWN
EMERGENT CONSTRAINTS ON MODEL PERFORMANCE

* GLOBAL HIGH-QUALITY CLOUD PHASE OBSERVATIONS ARE
CRITICALLY IMPORTANT FOR GCM VALIDATION AND

ULTIMATELY FOR RELIABLE PROJECTIONS OF FUTURE CLIMATE
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