Tropical Cloud Structure and Large Scale Circulation

Hui Su¹

Jonathan H. Jiang¹, Chengxing Zhai¹, Janice T. Shen¹, Graeme L. Stephens¹, Deborah G. Vane¹ David J. Neelin², Yuk L. Yung³

¹Jet Propulsion Laboratory, California Institute of Technology ²Dept. of Atmospheric and Oceanic Sciences, University of California, Los Angeles ³Division of Geological and Planetary Sciences, California Institute of Technology

CALIPSO-CloudSat Ten-year Progress Assessment and Path Forward Paris, 8-10 June, 2016

Large-scale Circulation and Clouds

(Emanuel, 1994)

1. "Conditional Sampling" of Cloud Profiles

2. Cloud and Circulation Responses to El Niño

3. Cloud Structure as "Emergent Constraint" on Climate Sensitivity

Part I "Conditional Sampling" of Cloud Profiles

Observed Clouds in Large-scale Regimes

(Su et al., GRL, 2008)

CWC Sorted by CAPE and LTS

- CAPE resembles deep convection pattern. High clouds are over high CAPE regions. Low clouds are more towards the lower CAPE regions.
- LTS is nearly a "complement" of CAPE.
- Shallow clouds are over higher LTS regions than high clouds. Infrequent high clouds exist at very high LTS values.

CWC Sorted By Precipitation and Water Vapor Path

- Heavy precipitation is from deep clouds. Only 15% of precipitating clouds have surface rain rates >= 2 mm/h, but they contribute to 55% of tropical rainfall.
- Deep clouds occur in moist air columns while low clouds are associated with drier air. Moist air columns with WVP >= 50 mm have only 0.3% occurrence frequency, but they contain 57% of total precipitable water.

Comparison to Models and Analyses

(Su et al. JGR, 2011)

CMIP5 Simulated Clouds Sorted by ω_{500}

(Su et al., JGR, 2013)

Diagnostic Framework

GFDL CM3 Clouds Sorted by ω_{500}

GFDL cm3 (CMIP5) **A-Train** 0.1000 0.1000 40.0 200 5.0 0.0100 0.0100 PRESSURE (hPa) CWC (mg/m³) 400 PDF PDF 0.6 600 0.0010 0.0010 0.1 800 0.0001 0.0001 10 0.0 1000 -50 50 -50 50 0 0 ω₅₀₀ (hPa/day) ω₅₀₀ (hPa/day) $\mathbf{C}_{\omega} \delta \mathbf{P}_{\omega}$ Ρ_ωδC_ω $\delta C_{\omega} \delta P_{\omega}$ **Tropical mean err** 4.2 200 200 **C**_δ**P**_ 0.5 PRESSURE (hPa) **PRESSURE (hPa)** <δC_{...}δP...> 400 400 _ءس س6/س Tot. err 600 600 -0.5 800 800 -8.3 1000 1000 -50 0 50 -50 50 -50 0 50 -20 0 20 0 -10 10 ω₅₀₀ (hPa/day) ω₅₀₀ (hPa/day) ω₅₀₀ (hPa/day) Δ CWC (mg/m³)

GISS Model Improvements

Part II Cloud and Circulation Responses to El Niño

A-Train View of El Niño

Two Types of El Niños

(Su and Jiang, J. Clim, 2013)

Moderate EP-El Niño 2006-07 DJF

(Modoki)

2009-10 DJF

Decompose the Dynamic and Thermodynamic Cloud Changes

TOA Cloud Radiative Forcing Changes

(Su and Jiang, J. Clim, 2013)

Part III Cloud Structure as "Emergent Constraint" on Climate Sensitivity

Changes of the Hadley Circulation, Clouds and Cloud Radiative Effects in the RCP4.5

(Su et al., JGR, 2014)

Multi-model-mean from 15 CMIP5 coupled models

Δ = 2074-2098 in "RCP4.5" – 1980-2004 in "historical run"

Quantifying the Model Differences in Circulation and Relation with Cloud Radiative Effect Changes

The explained variance by the 1st EOF is **57**%

- ✓ Area-weighted CRE changes for the weakening and strengthening segments account for 54% and 46% of the total CRE change within the HC.
- The amplitudes of the 1st EOF mode differ by two orders of magnitude in models.
- ✓ Differences in the Hadley Circulation changes are highly correlated with the inter-model spread in net CRE changes.

Normalized Response

Emergent Constraint on Climate Sensitivity

The Hadley Circulation

CloudSat/CALIPSO Cloud Fraction and AIRS/MLS Relative Humidity

Hadley Circulation Structure Suggests High Climate Sensitivity

(Su et al., JGR, 2014)

MBLC Seasonal Variation, 20°S – 40°S

(Zhai et al., GRL, 2015)

MBLC Sensitivity to SST at Seasonal and Centennial Time Scales

Satellite observations of MBLC seasonal cycle suggest that the best estimate of ECS ranges from 3.6 to 4.6 K, with a mean of 4.1 K and a standard deviation of 0.3 K.

Summary

- Cloud vertical structure observed by CloudSat/CALIPSO displays close couplings with large-scale circulation, serving as important metrics for climate model evaluations and improvements.
- Multi-year CloudSat/CALIPSO observations have revealed the profound impacts of El Niño on cloud distributions and cloud radiative effects.
- Observed cloud structures and seasonal variations serve as useful "emergent constraints" on climate sensitivity.