LWP Control on Cloud Albedo and the Aerosol Indirect Effect

Matt Christensen

Colorado State University Jet Propulsion Laboratory Now at: Rutherford Appleton Laboratory (RALspace)

<u>many thanks to:</u> Yi-Chun Chen Kenta Suzuki Brian Zambri David Neubauer John Seinfeld Graeme Stephens

Jet Propulsion Laboratory California Institute of Technology

Aerosol Indirect Effect: Warm Cloud

- Cloud properties & aerosol-cloud feedbacks are poorly parameterized in GCMs.
- The recipe for progress lies in improving our understanding of physical processes and in better representing these processes in models.

A-Train Ship Track Database

CALIPSO – lidar cloud top height

CloudSat – radar reflectivity, precipitation occurrence/intensity

MODIS – particle size, optical depth, liquid water path, cloud albedo

Evidence of Cloud Deepening

Cloud Type Classification

- Stratocumulus cloud type classification: *visual inspection* (subjective approach).
- **Dominant** types: closed, open, mixed/unclassifiable, no MCC
- Subtype: none, rolled, wavy, POC, streets

Cloud Type Identification

Rolled Stratocumulus

Year: 2006 Julian day: 204 time: 2145 UTC

Cloud Type Identification

Wavy Stratocumulus

Year: 2006 Julian day: 175 time: 0055 UTC

@AGUPUBLICATIONS

Geophysical Research Letters

RESEARCH LETTER

10.1002/2014GL061320

Ship track observations of a reduced shortwave aerosol indirect effect in mixed-phase clouds

M. W. Christensen^{1,2}, K. Suzuki², B. Zambri³, and G. L. Stephens²

Key Points: • Ship tracks discovered in ice clouds

Christensen et al. (2014), GRL

Ship Track Identification

1. Locate ship track

February 3rd, 2008 at 2145 UTC

2. Automated Pixel Identification

Classified: Closed Cell

Ship Track Identification

1. Locate ship track

2. Cloud type classification

3. Automated pixel identification

4. Construct along track segment

pixel identification

droplet radius

Ship pixels have *smaller* cloud droplets than the nearby unpolluted control pixels.

5. Collocate CALIOP to MODIS

6. Collocate CloudSat to MODIS

*Drizzle rates are lighter in polluted pixels compared to nearby unpolluted clouds.

Rain rate (2C-Column-Precip) Con1 = 0.19 mm/day Ship = 0.08 mm/day Con2 = 0.19 mm/day

Case Study: Enhanced Precipitation in Ship Track

January 11th, 2007 at 2210 UTC

Droplet Effective Radius

- Larger effective radii are found in open cell clouds (deficient in cloud nuclei).
- Increased aerosol burden from the ship decrease the size of cloud droplets.
- Fractional change in effective radius:

Closed cells: -18% Open cells: -22%

Liquid Water Path Differences

Ship - Controls

Does aerosol suppress precipitation and cause liquid water path to increase?

Does decreased drizzle allow Liquid Water Path (LWP) to increase?

(as suggested by Albrecht, [1989], and many others...)

Cloud Albedo

liquid water path response

- Changes in liquid water path primarily determine the sign and strength of the cloud albedo response.
- Twomey regime accounts for ~30% of cases:
 - Criteria: i.e., macrophysically similar clouds (ΔLWP & ΔH < 5%)
- E-PEACE field campaign results are in good agreement with A-train observations.

A: Cloud albedo (derived from BUGSRAD radiation code) LWP: Liquid water path

source: Chen et al. (2012)

Cloud Albedo free-troposphere humidity response

Free-troposphere humidity is critical

- Cloud top entrainment/drying effect becomes more pronounced as the relative humidity in the free troposphere decreases.
 - Cloud albedo effect is reduced as the free troposphere humidity decreases.
 - Moisture averaged between 850 and 700 hPa using ECMWF-AUX.

Do we see evidence for this effect on regional/global scales?

Global A-Train Observations

- Under moist and stable condition, LWP enhances with AI.
- Entrainment/drying effect is largest in dry and unstable conditions.
 - Consistent with ship track assessment and the LES simulations performed by Ackerman et al. (2004) & Chen et al. (2011).
- Co-variability of LTS and RH_{ft} buffer the liquid water path response to increasing aerosol concentration.

How does precipitation influence the strength of the aerosol indirect effect?

Cloud response under different environments

- Non-raining clouds: LWP *decreases* with AI.
 Raining clouds: LWP *increases* with AI; cloud albedo increases more.
- Under **moist free troposphere**: LWP increases more for raining clouds, and decreases less for non-raining clouds.
- Under moist/unstable environment, cloud albedo increases most.

Drizzling vs. Non-drizzling marine warm clouds

Source: Jean Chen

Statistical relationships between aerosol and cloud properties

<u>Data</u>

- Aerosol index: product of aerosol optical depth and angstrom exponent is a proxy for cloud condensation nuclei.
- Aerosol-cloud pairs gridded into 1°×1° regions.
- Each region contains ~40,000 data L2 cloud-aerosol data points.
- Aerosol (ATSR) properties are paired to 1-km cloud pixels through nearest neighbor method.

How do these observations vary with meteorology?

Aerosol-Cloud Interactions

Cloud Water Path Sensitivity Satellite-Model Comparisons JJA 2008; 60S° – 60° N (Ocean only)

-1 -0.75 -0.5 -0.25 0 0.25 0.5 0.75 1

Global Aerosol Indirect Forcing

$\frac{dC_{sw}}{d\ln(AI)} = \begin{bmatrix} \overline{c_m} \left(\frac{dA_{clr}}{d\ln(AI)} - \frac{dA_{cld}}{d\ln(AI)} \right) + \overline{(A_{clr} - A_{cld})} \frac{dc_f}{d\ln(AI)} \end{bmatrix} \overline{F}^{\downarrow}$ **intrinsic effect**aerosol changes on cloud properties **extrinsic effect**impact of aerosol on cloud fraction

Indirect Forcing Estimates:

• Intrinsic = −0.49±0.33 W/m²

-0.95 W/m²

Extrinsic = -0.46±0.31 W/m²

<u>Summary</u>

- Environmental condition and cloud type exert strong controls on the aerosol indirect effect sensitivity at both local (e.g., ship tracks) and global scales.
- For observational studies: it's imperative to isolate aerosol indirect effects by environmental conditions and, improve cloud albedo, aerosol, precipitation rate, and infrared sounding retrievals.
- For modeling studies: feedbacks involving entrainment, drizzle, and surface coupling should be incorporated into GCM's to improve estimates of the aerosol indirect forcing.

