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Aerosol Indirect Effect: Warm Cloud
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Aerosol Indirect Effect: Warm Cloud
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Quass et al. (2009)
Cloud properties & aerosol-cloud feedbacks are poorly parameterized in GCMs.

The recipe for progress lies in improving our understanding of physical processes and in

better representing these processes in models.



A-Train Ship Track Database

CALIPSO - lidar cloud top height
CloudSat — radar reflectivity, precipitation occurrence/intensity
MODIS — particle size, optical depth, liquid water path, cloud albedo

Period: June 2006 — December 2009
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< Cold: 149 (T<0°C)




Evidence of Cloud Deepening

radiatively inactive
~su nding cloud
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Open cells: 16% increase in cloud top height

Christensen and Stephens (2011)
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Cloud Type Classification

« Stratocumulus cloud type classification: visual inspection (subjective approach).
* Dominant types: closed, open, mixed/unclassifiable, no MCC
* Subtype: none, rolled, wavy, POC, streets

high CCN

optically thick
small droplets
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Cloud Type Identification

Year: 2006 Julian day: 204 time: 2145 UTC



Cloud Type Identification

Wavy Stratocumulus

Year: 2006 Julian day: 175 time: 0055 UTC
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Ship Track Identification

1. Locate ship track 2. Automated Pixel Identification
(based on Segrin et al. 2007)
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Ship Track Identification

1. Locate ship track 3. Automated pixel identification
MODIS:.2:1 pm Q 25 ' ' '
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2. Cloud type classification 4. Construct along track segment

~eH§ pixel identification droplet radius

Ship pixels have
smaller cloud
droplets than the
nearby unpolluted
control pixels.
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5. Collocate CALIOP to MODIS

Lidar Backscatter
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6. Collocate CloudSat to MODIS

Radar Reflectivity (2B-Geofprof)
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Case Study: Enhanced Precipitation in Ship Track
January 11th, 2007 at 2210 UTC
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» Larger effective radii are found in open cell clouds (deficient in cloud nuclei).

* Increased aerosol burden from the ship decrease the size of cloud droplets.

* Fractional change in effective radius:

Closed cells: -18%

Open cells: -22%



Liguid Water Path Differences

Ship - Controls
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Instantaneous Adjusted Total
Closed +0.18 -0.06 0.12
Open +0.22 +0.39 0.61

Implications: cloud albedo effect is masked by
decreases in liquid water.

—Closed Cell Regime: =12 W m™

—>O0pen Cell Regime: -59 W m2

Does aerosol suppress precipitation and cause liquid water path to increase?



Does decreased drizzle allow Liquid Water
Path (LWP) to increase?

(as suggested by Albrecht, [1989], and many others...)
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Christensen and Stephens (2012)



Cloud Albedo

liquid water path response

15.. T T T ° Changesinliquidwaterpatl‘
[ X primarily determine the sign
1.0F T ] and strength of the cloud
' L Z albedo response.
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A: Cloud albedo (derived from BUGSRAD radiation code)
LWP: Liquid water path source: Chen et al. (2012)



Cloud Albedo

free-troposphere humidity response
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Free-troposphere humidity is critical

* Cloud top entrainment/drying effect
becomes more pronounced as the
relative humidity in the free
troposphere decreases.

* Cloud albedo effect is reduced
as the free troposphere
humidity decreases.

* Moisture averaged between 850
and 700 hPa using ECMWEF-AUX.

Do we see evidence for this effect on
regional/global scales?



Global A-Train Observations

Liquid Water Path Response
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LTS: Lower Troposphere Stability (LTS = ©5y5,16 — Ourface)
RH,,: Free-troposphere Humidity (relative humidity above cloud top)

LWP: Liquid Water Path (MODIS)

Al-Aerosol lndex-(MODIS)

Under moist and stable condition,
LWP enhances with Al.

Entrainment/drying effect is
largest in dry and unstable
conditions.

— Consistent with ship track
assessment and the LES
simulations performed by
Ackerman et al. (2004) & Chen

et al. (2011).

Co-variability of LTS and RHy, buffer
the liquid water path response to
increasing aerosol concentration.

How does precipitation
influence the strength of the
aerosol indirect effect?



Cloud response under different environments

Moist/dry: RH above cloud top higher/lower than 40%. D Non-raining (82.6 %)
Stable/Unstable: LTS (0., — O,) larger/lower than 17K. (W Raining (17.4 %)

dR./dIn(Al) dLWP/dIn(Al) dA4/dIn(Al)
Moist/stable | | | | I = |
Moist/unstable e —
Dry/stable g
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* Non-raining clouds: LWP decreases with Al.
Raining clouds: LWP increases with Al; cloud albedo increases more.

e Under moist free troposphere: LWP increases more for raining clouds, and
decreases less for non-raining clouds.

* Under moist/unstable environment, cloud albedo increases most.



Drizzling vs. Non-drizzling marine warm clouds

With drizzle

LWP increase
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albedo

Effective Droplet Radius §{  Statistical relationships between
aerosol and cloud properties

jdin(R)__ Data
. dIn Al * Aerosol index: product of
Cloud Optical Depth aerosol optical depth and
f angstrom exponent is a
{ dIn(7) proxy for cloud
E 3 =0.06 : .
1 dInAl condensation nuclei.
ELiquid Water Path . Aerosol-cloud.pairs gridded
3 3 into 1°x1° regions.
] ] dInLWP _ 0
_ _ dInAl * Each region contains ~40,000
5 5 data L2 cloud-aerosol data
points.
Clopd Albedo ; * Aerosol (ATSR) properties are
dlnA ) .
=0.02 paired to 1-km cloud pixels
dln Al through nearest neighbor
method.
0.1 How do these observations vary with

Al meteorology?
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Aerosol-Cloud Interactions

Cloud Water Path Sensitivity Satellite-Model Comparisons

JJA 2008; 60S° — 60° N (Ocean only)

Satellite: AATSR
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Main result

* LWP sensitivity to
increasing aerosols is
significantly larger in the
ECHAM®6 model compared
to AATSR observations.

* Model derived aerosol
indirect forcing is more
than two times larger than
satellite data (IPCC, 2013).

* Feedbacks that reduce the
LWP sensitivity (e.g.,
entrainment) are poorly
parameterized in model
simulated clouds which
may explain the significant
difference between model
and satellite observations.



Global Aerosol Indirect Forcing
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~v Indirect Forcing Estimates:

e Intrinsic = -0.4910.33 W/m _ )
. Extrinsic = -0.46£0.31 W/m 0.95 W/m

N. Hemisphere

S. Hemisphere Summary

* Environmental condition and cloud type exert strong
controls on the aerosol indirect effect sensitivity at
both local (e.g., ship tracks) and global scales.

Non-raining

Raining

* For observational studies: it’s imperative to isolate
aerosol indirect effects by environmental conditions
and, improve cloud albedo, aerosol, precipitation rate,
and infrared sounding retrievals.
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; * For modeling studies: feedbacks involving
entrainment, drizzle, and surface coupling should be
incorporated into GCM's to improve estimates of the
aerosol indirect forcing.

-1.0 -0.8 =06 -04 -0.2 0
Intrinsic aerosol-cloud radiative forcing (W m~=2)

Chen et al. (2014), Nat. Geosci.

 dg
)\+ (Agr —Aaa) WAD’ F Cgw: Shortwave Cloud Forcing (CERES)

Cl]]

dCsw [_ ( dAclr dAcld

dIn(Al) \ din(AD) dIn(AD A, clear-sky albedo (CERES)
Y. Y A q: cloudy sky albedo (CERES)
¢;: cloud cover fraction over CERES footprint
intrinsic effect extrinsic effect ¢,,: annual mean marine warm cloud coverage

. AL Aerosolindex (IMODIS)
aerosol changes on cloud impact of aerosol on AEACFOSORES-T 7

proparties cloud-fraction——-
s clou




