CloudSat & thoughts for next steps

Graeme Stephens, Eastwood Im Jet Propulsion Laboratory, USA

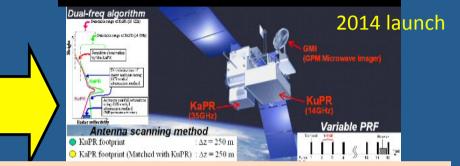
June 9, 2016

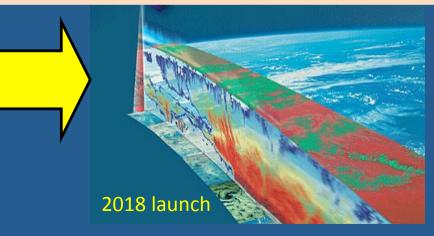
CloudSat status – June 2016

- CloudSat continues to fly in formation with CALIPSO in the A-Train.
 - The goal is to overlap radar and lidar footprints within +/-4km of the groundtrack (Prior to 2012, the goal was to overlap within +/-2km).
 - In 2015, CALIPSO's lidar was within 4km of CloudSat's radar groundtrack **88%** of the time.
 - In 2016, CALIPSO's lidar was within 4km of CloudSat's radar groundtrack **87%** of the time.
- CloudSat operational longevity:
 - The Daylight-Only Operational Mode (DO-Op) continues to provide reliable performance.
 - Spacecraft battery is slowly aging, but good power margins exist
 - No life-limiting issues with any other spacecraft subsystems.
 - The CloudSat radar is still operating on Side A of the high power amplifier. A switch to Side B may be needed sometime in the next 1-2 years.
 - Fuel is not a life-limiting concern. CloudSat has sufficient remaining delta-V capacity for at least 5 more years of operational lifetime (~2021).
- CloudSat will propose to the NASA Senior Review process next Spring to continue operations to 2021.

Big observations constructed from a number of smaller parts

First Two Generations of Spaceborne Weather Radars

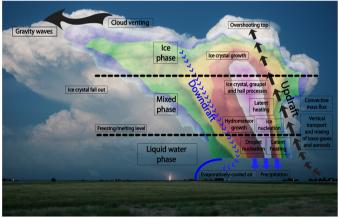

TRMM/PR – NICT/JAXA Ku, Scanning, Tropical Rain


CloudSat/CPR – JPL/NASA/CSA W, Nadir, CloudS

200

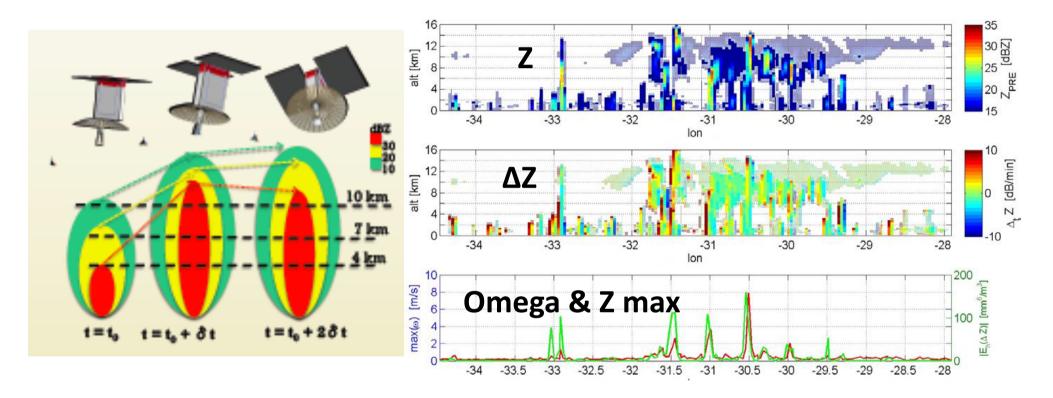
GPM/DPR – NICT/JAXA Ku/Ka, Scanning, Precipitation

TRMM, CloudSat and CALIPSO have clearly demonstrated that active sensors are robust and just as reliable as passive systems

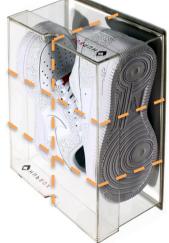

Earth science aspirations

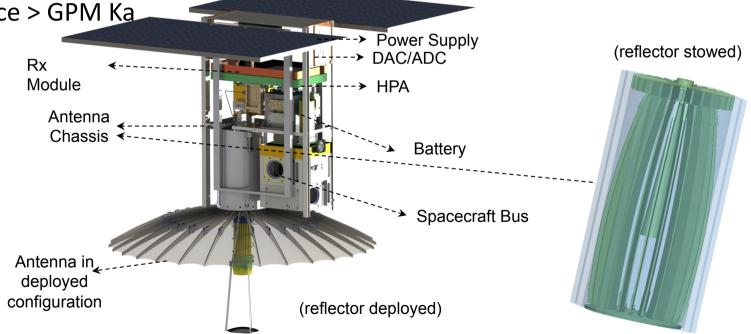
Explain the Past Understand the Present

Predict the Future


Science Driver on Next-Generation Atmos Radars — Process Study

- CloudSat→EarthCARE and TRMM→GPM measure vertical profiles of two 'types' of hydrometeors (clouds and precipitation) separately.
- In recent community workshops/meetings it is generally recognized that the next set(s) of space measurements should put more emphasis on process studies (understand & predict)
 - Capture the comprehensive cloud/precip processess
 - Multi-frequency radar to increase measurement dynamic range (e.g. ACE, CAPMM)
 - Simultaneous measurements of Doppler velocity to associate dynamics to the hydrometeor contents (e.g ACE, CAPMM)
 - Capture time evolution processes
 - GEO radars for studying life cycle of cyclones
 - LEO radar constellation (emerging capability)
 - In train formation
 - In general constellation


Clustered measurements: time differenced measurements probing processes



- Provides more accurate measures of condensed mass because biases get removed
- Provides methods to estimate mass flux, previously unthinkable

RainCube: Key to miniaturization and cost reduction

- JPL has developed a novel radar architecture (patent pending) for a Ka band (35.75 GHz) precipitation profiling radar for operation in a 6-U CubeSat platform
 - Digital electronics 0.5U
 - RF electronics 0.5U
 - SSPA 1U
 - Deployable antenna 1.5U
 - Performance > GPM Ka

RainCube Status

- The 1st-generation RainCube tech demo unit is being developed, and will be ready to launch in summer 2017
 - Plan for space operation for at least
 6 months
- Technologies for Second- and thirdgeneration RainCube concepts are being developed
 - 1-m or larger deployable
 - Cross-track scanning
 - Doppler
 - Adaptation to 6-12U cubsats, and smallsats.

