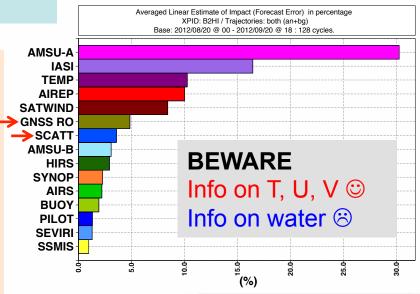

Data assimilation for NWP at Météo-France: current status and plans towards an increased usage of active instruments

J.-F. Mahfouf*
Météo-France/CNRS
CNRM/GMAP
Toulouse (France)

CALIPSO-CLOUDSAT 10 year progress assessment and path forward 8-10 June 2016

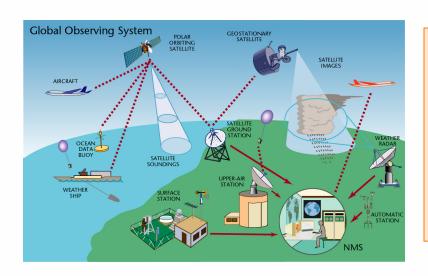
Purpose of this presentation


Explain:

- -> the current usage of observations for NWP with an emphasis on satellite data (> 90 % in global systems)
- -> why the use of active instruments is currently challenging (visible, IR, MW) in NWP despite providing complementary and valuable information on the atmosphere
- -> why rapid progress is expected in the coming years

What are currently the most « useful » observing systems for global NWP?

- -> **AMSU-A**: microwave 55 GHz, several instruments, weakly affected by clouds, low NeΔT, info on T
- -> **IASI**: infra-red 15 μ m-> 4 μ m, many channels (cloud detection), low Ne Δ T, info on T and WV


Outline

- Generalities about observations for data assimilation
- On the use of observations for NWP at Météo-France
- Activities on radar data assimilation
- Plans towards increased usage of active instruments

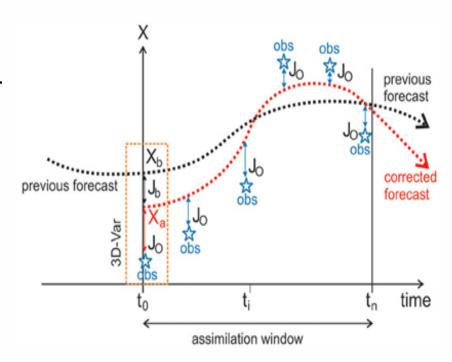
Preamble

- Observations for NWP: used to create an accurate model initial condition to provide an accurate forecast
- Data Assimilation: Statistical optimal combination between available observations and a short-range forecast (background or first-guess)
- DA important aspects:
 - Optimality => knowledge of random and systematic errors (biases)
 - Importance of quality controls and model capacity to simulate the observations (observation operator) => reject « useless » observations

Variables of interest:

<u>Current</u>: mass, temperature, wind, water vapour

<u>Future</u>: soil moisture, condensed water, atmospheric composition, aerosols, ...

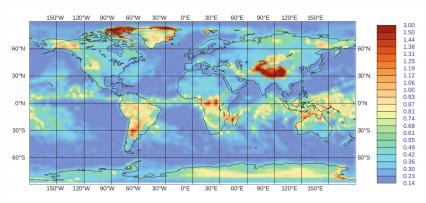


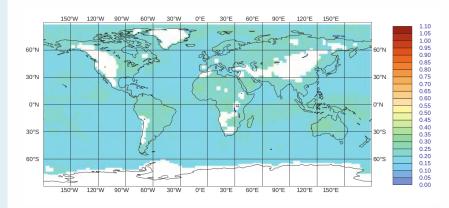
Variational data assimilation

Mathermatical formulation: cost-function to minimize

$$J(x) = \frac{1}{2}(x - X_b)^T B^{-1}(x - X_b) + \frac{1}{2}[y - H(x)]^T R^{-1}[y - H(x)]$$

- x = state vector (temperature, wind components, surface pressure, water vapour content)
- x_b = background (short-range forecast)
- *y* = available observations
- *H* = observation operator
- B = background error covariance matrix
- R = observation error covariance matrix

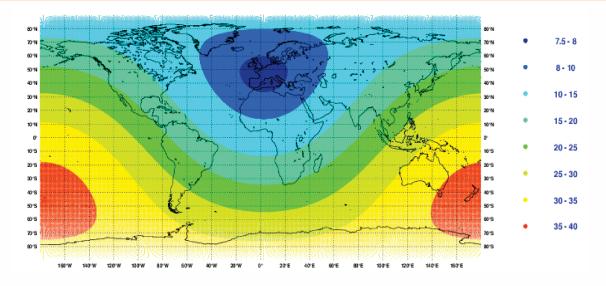



Observations for DA in NWP: requirements

- Accurate model to simulate (rapidly)
 the observation: observation too far
 from the model => problem either with
 the observation or with the model –
 observations closer to the measurement
 should be favored (L1 vs L2)
- Accurate and complementary observations: accurate enough and numerous (in time and/or space) and should complement existing observing systems (reduncancy can be useful for improving resilience)
- Near-real time availability: less than 3 hours after the measurement
- Unbiased and uncorrelated: bias corrections – data sampling

Observation minus model

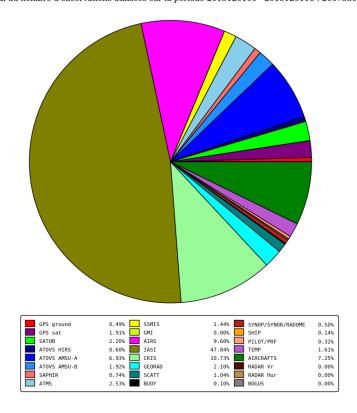
All data: AMSU-A Ch5


Data for assimilation

Remark : for AMSU-A in clear sky OmB close to Ne∆T (0. 3 K)

Global model ARPEGE

Spectral model with variable resolution : $T_L1198c2.2L105$ (resolution from 7.5 km to 36 km, 105 levels from 10 m to 0.1 hPa) Forecasts up to 104 hours



<u>Moist physical processes</u>: prognostic large-scale precipitation scheme with explicit microphysics for 4 species (Lopez, 2002) and diagnostic moist convection scheme based on mass-flux (Bougeault, 1985)

<u>Data assimilation system</u>: 4D-Var (6-h window and 30 min time-slots) + ensemble data assimilation system (background error statistics)

Partition by observation types

Proportions des nombres d'observations utilisées par type d'obs analyses cut-off long - ARPEGE metropole dbl observations conventionnelles et satellites cumul du nombre d'observations utilisées sur la période 2015120100 - 2015120118 : 20675304

ARPEGE Model – 01/12/2015

Total number of daily data assimilated (4 analyses per day):

20.6 millions

IR sounders -> IASI 48 % + AIRS

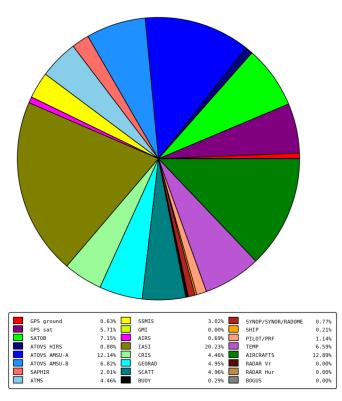
10 % + CrIS 11 % => 69 %

MW sounders/imagers: 14 %

GPS-RO: 2 %

SCAT winds: 1 %

SATOB winds: 2 %


Aircraft data: 7 %

TEMP+PILOT: 2 %

Information content: DFS

DFS (Degree of Freedom for Signal) : capacity of an observing system to reduce the a-priori information

DFS: depends upon the number of observations, the observation accuracy, the projection on the variables to analyse (T,q,U,V,Ps)

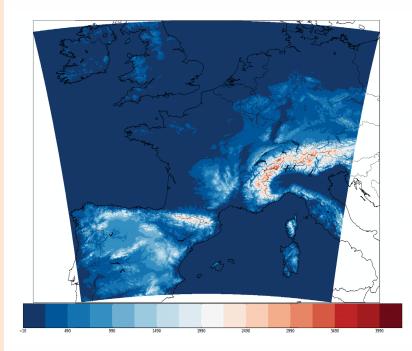
MW imagers/sounders: 28 %

IASI IR sounder: 20 %

Aircraft data: 12 %

TEMP+PILOT: 8 %

GPS-RO:6%


SCAT winds: 5 %

SATOB winds: 7 %

Regional model AROME

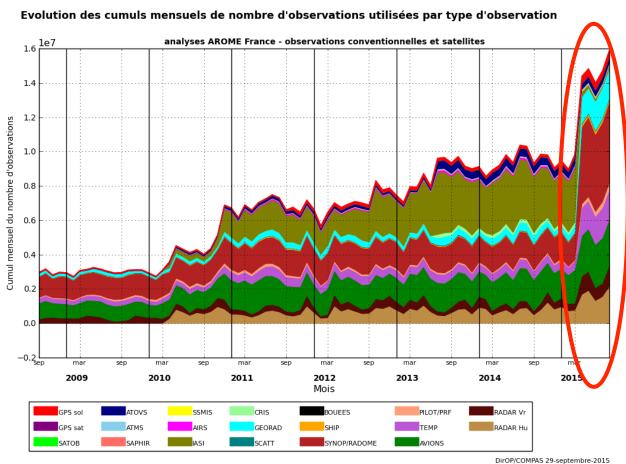
- Spectral limited area non-hydrostatic model with explicit moist convection (since 12/2008) => hydrometeors as prognostic variables (mass concentration)
- Horizontal resolution : 1.3 km
- 90 vertical levels (from 5 m up to 10 hPa)
- 3D-Var assimilation (1-h window)
- Observing system : same as ARPEGE
 (+) 5 SEVIRI/MSG radiances (with Ts inversion) (+) radar DOW and Z (RH)
- Forecast range : up to 42 hours

Observations in AROME 3D-Var

IASI AIRCRAFTS SURFACE RADARS

SEVIRI

ATOVS


TEMP

At mesoscale (mid-latitudes):

ground based and conventional obs

>> satellite data

Obs at high temporal availability

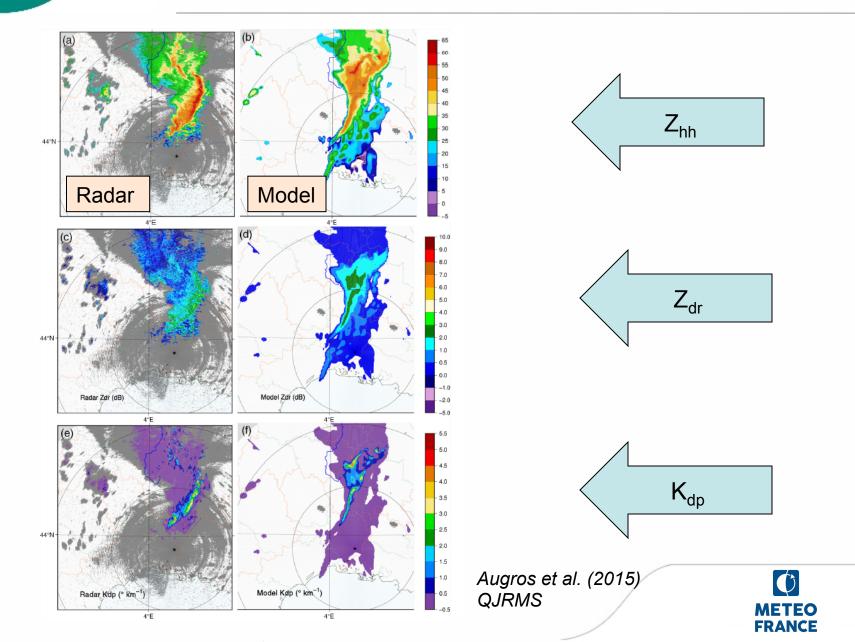
Simulation of polarimetric radar data (1)

One moment cloud scheme: ICE3 with 6 water species (water vapor, cloud water, rain water, graupels, dry snow and pristine ice)

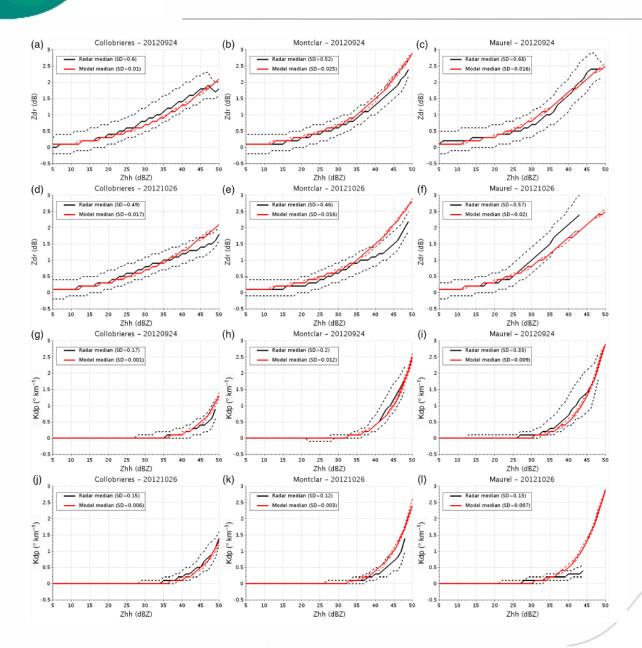
PSD: Exponential for rain, snow and graupel, generalized Gamma for cloud water and pristine ice

Densities are given by mass-diameter relationships m = aDb

What we would like to simulate:


- -horizontal reflectivity Z_{hh}
- -differential reflectivity Z_{dr}
- -differential phase $\Phi_{\sf dp}$
- -specific differential phase K_{dp}
- -co-polar correlation coefficient ρ_{hv}

What needs to be specified with some level of arbitrariness:


- -raindrop shape : axis ratio $r = f(D_{eq})$
- -dielectric function for snow and graupels (Maxwell-Garnett)
- -dielectric properties for melting graupels

Simulation of polarimetric radar data (2)

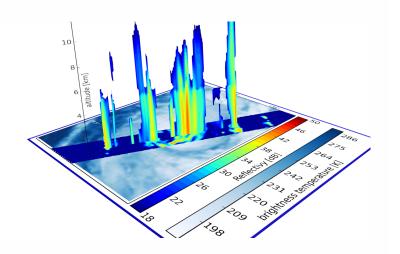
Simulation of polarimetric radar data (3)

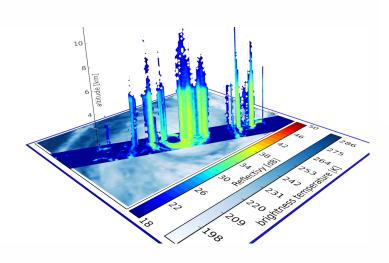
$$Z_{dr} = f(Z_{hh})$$

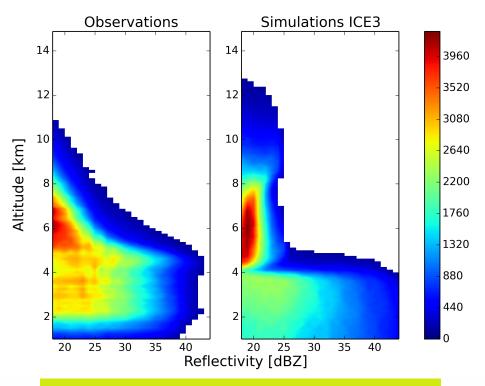
$$K_{dp} = f(Z_{hh})$$

MODEL

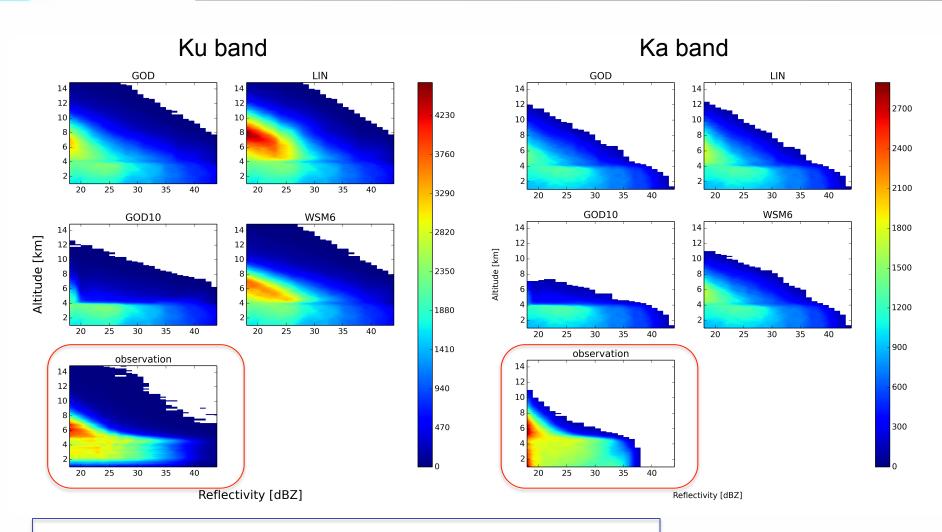
RADAR


Lack of variability in the model


-> one moment scheme

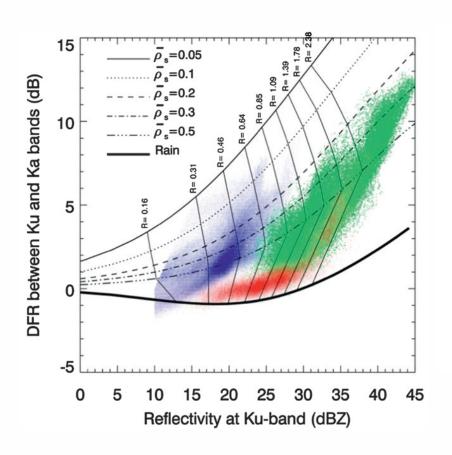

Augros et al. (2015) QJRMS

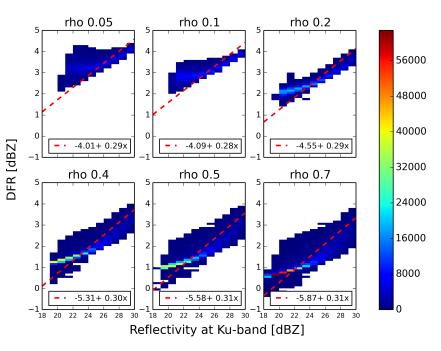
Simulation of GPM DPR with AROME (1)



2D histograms (10 days) of DPR reflectivities in Ku band using microphysics consistent with ICE 3 in SDSU radar simulator

Simulation of GPM DPR with AROME (2)




GOD: Tao (2003) LIN: Lin et al. (1983)

GOD10: improved GOD WSM6: Hong et al. (2004)

Simulation of GPM DPR with AROME (3)

Use of the Dual Frequency Ratio to constrain the snow density specification in the radar simulator

Data assimilation of active sensors

- Current status: spaceborne (scatterometers : C and Ku band radars; GNSS-RO : L-band signals) + ground based (weather radars : C, S and X band; wind profilers)
- Drawbacks: the raw signal (backscatter coefficient, reflectivity) is converted into a meteorological quantity before assimilation
- Explanation: Lack of knowledge in the NWP model on the physical content of the signal (cloud microphysics, sea state) => observation operator
- Future spaceborne instruments: ADM-AEOLUS (Doppler wind lidar; use of L2 products), EarthCare (cloud radar and lidar; 1D +4D-Var at ECMWF)
- Difficulties for DA: polar orbiting satellites with nadir viewing, rather crude description of clouds and aerosols to simulate observations (regional vs. global systems) – but still very useful for model validation (preliminary step before DA)

Conclusion and future activities

 Interest: detailed vertical structure on complementary meteorological variables + high temporal frequency of ground based instruments (convective scale DA – nowcasting)

Expected model and data assimilation improvements:

- More realistic description of cloud microphysics (2 moment schemes)
 with aerosol interactions (nucleation, scavenging, ...)
- Coupled modelling systems with atmosphere, ocean, land surface, sea state, chemistry, ...
- Development of ensemble data assimilation including new prognostic variables (clouds, precipitation, atmospheric composition) with associated background error statistics

Requirements :

- Development of accurate and efficient observation operators need to explore the short-wave spectrum (IR + solar)
- Improved handling of model and observation errors (biases, ...)
- Space based instruments with a wide swath?

Thank you for your attention!

